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ABSTRACT: The first enantioselective synthesis of (−)-con-
olutinine was achieved in 10 steps. The synthesis featured a
catalytic asymmetric bromocyclization of tryptamine to forge
the tricycle intermediate. Hydration of an alkene catalyzed by
Co(acac)2 was also employed as a key step to diastereose-
lectively introduce the tertiary alcohol moiety. The absolute
configuration of (−)-conolutinine was established to be
(2S,5aS,8aS,13aR) based on this asymmetric total synthesis.

Cyclotryptamine alkaloids constitute a family of indole
alkaloids incorporated with hexahydropyrrolo[2,3,-b]-

indole (HPI) fragment with broadly biological activities.1

Among these indole alkaloids, terpenoid indole alkaloids
(Figure 1; e.g., minfiensine (1),2 vincorine (2),3 and

conolutinine (3)4) are structurally impressive, as those alkaloids
usually possess a complex ring system and continuous
quaternary carbon centers, which posed a formidable synthetic
challenge for chemists. To date, numerous synthesis and
synthetic studies of terpenoid indole alkaloids have been
reported with an innovative methodology or strategy being
applied for a concise and enantioselective synthesis.2,3

Conolutinine (3), a new member of terpenoid indole
alkaloid with interesting activity to reverse multidrug resistance
in vincristine-resistant KB cells, was isolated by Kam in 2009
from Malaysian Tabernaemontana.4 The gross structure of

conolutinine (3) was established by extensive 2D NMR
analysis, and its absolute configuration was empirically assigned
by its hypothetic biosynthetic pathway from velbanamine.
Structurally, conolutinine contains three quaternary carbon
centers, two of which are vicinal including a diazospiro one.
Additionally, an HPI moiety coupled with fused oxadiazepine-
tetrahydrofuran rings renders conolutinine to adopt a rigid
cage-like conformation. In our continuous efforts to synthesize
cyclotryptamine alkaloids,5 herein we would like to report the
first total asymmetric synthesis of (−)-conolutinine relying on
our recently reported asymmetric bromocyclization of
tryptamine.5b

As depicted in Scheme 1, we envisioned that (−)-con-
olutinine could be obtained by partial reduction of amide of
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Figure 1. Representative terpenoid indole alkaloids incorporated with
hexahydropyrrolo [2,3-b]indole (HPI) framework.

Scheme 1. Retrosynthetic Analysis of Conolutinine (3)
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hydroxyl-pyrroloindoline 4 followed by acetalization to
construct a bridged tetrahydrofuran ring. For the synthesis of
4, the formation of a tertiary alcohol from a terminal olefin via
an oxidation/diastereoselective ethylation sequence would lead
to a pentacyclic intermediate, which could be accessible from
pyrroloindoline 5 through N-alkylation and sequential cycliza-
tion with allyl dibromide 6. To this end, amine 5 could be
generated by hydrolysis and deprotection of bromo-pyrroloin-
doline 7. S-8H-TRIP catalyzed asymmetric bromocyclization of
tryptamine derivative 8 would enable the construction of
bromo-pyrroloindoline 7 with desired stereochemistry.5b

Finally, disconnection of indole 8 from amide and C2−C9
bonds afforded tryptamine and succinic anhydride.
As shown in Scheme 2, the synthesis commenced with

condensation of tryptamine 9 with succinic anhydride, which

was further advanced to ketone 10 via an intramolecular
Friedel−Craft reaction promoted by AlCl3 in 80% yield over
two steps.6 To remove the ketone moiety of 10, Pd/C7a

catalyzed hydrogenation was attempted while irreproducible
yields (0−100%) resulted, which depended on the reaction
scale and quality of Pd/C. Switching to other reduction
conditions provided low yields (Raney/Ni/H2, NaBH4

7b) or
decomposition of ketone 10 (Wolff−Kishner reduction7c).
Eventually, reduction was successively achieved by using TFA/
Et3SiH,

7d affording indole 8 in 86% yield. To our delight,
enantioselective bromocyclization of indole 8 could be
efficiently realized even on gram scale by employing our
developed protocol,5b providing bromo-pyrroloindoline 7 in
95% yield and 91% ee.
With a reliable supply of bromo-pyrroloindoline 7 being

secured, formation of an azocane ring was executed. Hydrolysis
of the bromide of 7 with the assistance of AgOTf8 gave
hydroxyl-pyrroloindoline 11 in 95% yield, whose relative
structure was substantiated by X-ray crystallography10 (Scheme
3). However, removal of the methoxycarbamate of 11 met with
much difficulty than was expected, owing to the lability of
hydroxyl-pyrroloindoline 11. Commonly employed reagent
TMSI9a only resulted in decomposition of hydroxyl-pyrroloin-
doline 11. Basic conditions for hydrolysis of methoxycarbamate
(40% aq KOH,9b KOTMS9c) were also ineffective with only
unchanged starting material recovered. Fortunately, nucleo-
philic deprotection by heating 11 with KCN9d in DMSO to 160
°C provided pyrroloindoline 5 in 96% yield. Other nucleophilic
reagents such as NaI9e and n-PrSLi9f were not viable for the
deprotection. At this stage, enantiopurity of 5 could be
improved to 97.5% ee after crystallization. N-Allylation of
amine 5 with allylic dibromide 6 in dilute MeCN and

consecutive cyclization mediated by t-BuOK smoothly effected
pentacycle 12. It is critical to use t-BuOK as a base as other
bases (e.g., LiHMDS, NaHMDS; see Supporting Information)
were deleterious for the reaction, leading to much lower yields.
Disappointingly, oxidation of the terminal olefin by OsO4/
NaIO4, followed by introduction of tertiary alcohol by an
ethylation reaction (EtMgBr/ZnCl2

6), gave good diastereose-
lectivity (dr 1:15) in favor of undesired isomer 1310,11 (86%
yield), indicating that the β-face of the pentacycle intermediate
was sterically less crowded.
To set up the desired stereoconfiguration of the hydroxyl,

direct hydration of the trisubstituted olefin of pentacycle 15 was
thus formulated by taking advantage of the inherent spatial bias
of the pentacycle framework (Scheme 4). For this purpose, bis-

alkylation of pyrroloindoline 5 using dibromide 1412 and
subsequent ring closure successfully led to pentacycle 15 in
50% yield over two steps. Considering the instability of 15
toward strong acids used for hydration reactions, a metal
mediated radical oxidation condition was judiciously selected
for its mild reaction conditions and functionalities compati-
bility. Different reaction conditions13 were surveyed, and

Scheme 2. Synthesis of Bromo-pyrroloindoline 7

Scheme 3. Synthesis of Diol 4

Scheme 4. Completion of Synthesis of (−)-Conolutinine
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selected results are displayed in Table 1 (vide inf ra). As
anticipated, desired isomer 4 was predominantly produced by
following Boger’ recipe using excessive Fe2(ox)3

13b−d and
NaBH4 (dr 6:1, Table 1, entry 1). However, low isolated yields
(28%) resulted, as substantial reduction product 16 was also
formed. Screening of different catalysts and other variations
gave no improvement (entries 1−3, Supporting Information).
Subsequently, Mukaiyama’s procedure13e−h was evaluated and
led to a comparable isolated yield with decreased diaster-
eoselectivity (dr 2:1, Table 1, entry 4). However, this procedure
was more appealing to us for a cleaner reaction mixture (no
reduction product 16) and operational convenience (no need
for an excess of metal complex and very dilute conditions). To
our delight, a slightly higher yield (42%, Table 1, entry 5) was
obtained when a hydrochloride salt of 15 was used, presumably
due to its improved stability toward the reaction conditions.
Any change to the reaction conditions was detrimental to the
reaction (Table 1, entries 6−7, and Supporting Information).
To complete the synthesis, semireduction of amide with

DIBAL-H followed by spontaneous acetalization smoothly
produced conolutinine (3) in 72% yield (Scheme 4). The
physical data (NMR and optical rotation) of synthetic
conolutinine were in agreement with the reported data.
Furthermore, X-ray crystallography of the hydrochloride salt
of synthetic conolutinine (3) confirmed the absolute
configuration of (−)-conolutinine (3).10

In summary, a 10-step asymmetric synthesis of (−)-con-
olutinine was achieved by employing enantioselective bromo-
cyclization of tryptamine. The synthesis also featured a late-
stage Co-catalyzed radical oxidation of alkene to diastereose-
lectively construct a tertiary alcohol with the desired stereo-
configuration. Based on this total synthesis, the absolute
configuration of (−)-conolutinine was determined to be
(2S,5aS,8aS,13aR).
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